An FPT Algorithm for Minimum Additive SpannerProblem

Formally, for a positive integertand a graphG, a spanningsubgraphHofGis said to be amultiplicativet-spannerifdistH(u,v)≤t·distG(u,v)holdsfor any pair of verticesuandv.

or a positive integertand a graphG, aspanning subgraphHofGis said to be anadditivet-spannerifdistH(u,v)≤distG(u,v) +tholds for any pair of verticesuandv.

s a common generalization of these two concepts,(α,β)-spanners have also been studiedin the literature. Forα≥1,β≥0, and a graphG, a spanning subgraphHofGis said tobe an(α,β)-spannerifdistH(u,v)≤α·distG(u,v) +βholds for any pair of verticesuandv.

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇